Abstract

BackgroundIn ovarian cancer (OC) cells, Snail was reported to induce the epithelial-to-mesenchymal transition (EMT), which is a critical step in OC metastasis. At present little is known about controlling Snail expression in OC cells by using specific microRNAs (miRNAs).MethodsWe first used a computational target prediction analysis to identify 6 candidate miRNAs that bind to the 3′-untranslated region (3′-UTR) region of the Snail mRNA. Among these miRNAs, two miRNAs (miR-137 and miR-34a) with a potential to regulate Snail were validated by quantitative real-time PCR, Western blot analysis, and Snail 3′-UTR reporter assays. We assessed the effects of miR-137 and miR-34a on EMT, invasion and sphere formation in OC cells. We also evaluated the expression of miR-137 and miR-34a in OC tissues and adjacent normal tissues and analyzed the relationship between their expression and patient survival.ResultsWe report that OC tissues possess significantly decreased levels of miR-137 and miR-34a and increased expression of Snail when compared to their adjacent normal tissues, and lower miR-137 and miR-34a expression correlates with worse patient survival. Using luciferase constructs containing the 3′-UTR region of Snail mRNA combined with miRNA overexpression and mutagenesis, we identified miR-137 and miR-34a as direct suppressors of Snail in OC cells. The introduction of miR-137 and miR-34a resulted in the suppression of Snail at both the transcript and protein levels, and effectively suppressed the EMT phenotype and sphere formation of OC cells. However, the inhibition of miR-137 and miR-34a with antisense oligonucleotides promoted EMT and OC cell invasion. Moreover, ectopic expression of Snail significantly reversed the inhibitory effects of miR-137 and miR-34a on OC cell invasion and sphere formation.ConclusionsThese findings suggest that both miR-137 and miR-34a act as Snail suppressors to negatively regulate EMT, invasive and sphere-forming properties of OC cells.

Highlights

  • In ovarian cancer (OC) cells, Snail was reported to induce the epithelial-to-mesenchymal transition (EMT), which is a critical step in OC metastasis

  • MiR-137 and miR-34a are downregulated in OC tissues and OC cell lines, and decreased expression of miR-137 and miR-34a is associated with poor survival in OC patients To investigate miRNA regulation of Snail, we first employed multiple algorithms, including TargetScan, miRSystem and DIANA-MicroT-CDS, to screen the specific miRNAs that can target the 3′-untranslated region (3′-UTR) region of the Snail mRNA

  • To examine whether the downregulation of miR-137 or miR-34a has any clinical significance in OC, we analyzed the association between miR-137 or miR-34a expression and patient prognosis

Read more

Summary

Introduction

In ovarian cancer (OC) cells, Snail was reported to induce the epithelial-to-mesenchymal transition (EMT), which is a critical step in OC metastasis. At present little is known about controlling Snail expression in OC cells by using specific microRNAs (miRNAs). The EMT process can be initiated by a group of transcription factors including SNAIL (Snail), which repress the expression of epithelial markers (E-cadherin and ZO-1), and induce the levels of mesenchymal markers (Vimentin and N-cadherin) [5]. Growing evidence suggests that a number of epigenetic mechanisms control the expression of genes that facilitate EMT and induce metastasis [6]. MicroRNAs (miRNAs) have important roles in the regulation of cancer cell invasion and motility, by suppressing or promoting EMT [7]. Little is known about controlling Snail expression in OC cells by using specific miRNAs

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call