Abstract

ObjectivesPostflight orthostatic intolerance has been regarded as a major adverse effect after microgravity exposure, in which cerebrovascular adaptation plays a critical role. Our previous finding suggested that dedifferentiation of vascular smooth muscle cells (VSMCs) might be one of the key contributors to cerebrovascular adaptation under simulated microgravity. This study was aimed to confirm this concept and elucidate the underlying mechanisms.Materials and MethodsSprague Dawley rats were subjected to 28‐day hindlimb‐unloading to simulate microgravity exposure. VSMC dedifferentiation was evaluated by ultrastructural analysis and contractile/synthetic maker detection. The role of T‐type CaV3.1 channel was revealed by assessing its blocking effects. MiR‐137 was identified as the upstream of CaV3.1 channel by luciferase assay and investigated by gain/loss‐of‐function approaches. Calcineurin/nuclear factor of activated T lymphocytes (NFAT) pathway, the downstream of CaV3.1 channel, was investigated by detecting calcineurin activity and NFAT nuclear translocation.ResultsSimulated microgravity induced the dedifferentiation and proliferation in rat cerebral VSMCs. T‐type CaV3.1 channel promoted the dedifferentiation and proliferation of VSMC. MiR‐137 and calcineurin/NFATc3 pathway were the upstream and downstream signalling of T‐type CaV3.1 channel in modulating the dedifferentiation and proliferation of VSMCs, respectively.ConclusionsThe present work demonstrated that miR‐137 and its target T‐type CaV3.1 channel modulate the dedifferentiation and proliferation of rat cerebral VSMCs under simulated microgravity by regulating calcineurin/NFATc3 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call