Abstract

The dysregulated behavior of vascular smooth muscle cells (VSMCs) serves an important role in the pathogenesis of cardiovascular diseases in diabetes. The present study aimed to investigate the effects of microRNA (miR)‑132 on the proliferation and migration of VSMCs under high glucose conditions to mimic diabetes. We observed that the expression of miR‑132 was significantly decreased and that of E2F transcription factor 5 (E2F5) was upregulated in high glucose (HG)‑treated VSMCs or those obtained from diabetic rats. A dual luciferase reporter gene assay revealed that miR‑132 could specifically bind to the 3'‑untranslated region of E2F5 and significantly suppress the luciferase activity. The proliferation and migration of diabetic rat or HG‑treated VSMCs were increased compared with non‑diabetic rat VSMCs and those under normal glucose conditions. Upregulation of miR‑132 significantly inhibited the proliferation and migration of diabetic rat VSMCs; similar effects were observed following E2F5 downregulation. The inhibitory effects of miR‑132 on the proliferation and migration of HG‑treated VSMCs could be reversed by E2F5 overexpression. In conclusion, miR‑132 was proposed to inhibit the proliferation and migration of diabetic rat or high‑glucose‑treated VSMCs by targeting E2F5. The findings of the present study suggested that increasing the expression of miR‑132 may serve as a novel therapeutic approach to inhibit the progression of cardiovascular disease in diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.