Abstract
BackgroundNeuroinflammation contributes to both epileptogenesis and the associated neurodegeneration, so regulation of inflammatory signaling is a potential strategy for suppressing epilepsy development and pathological progression. Exosomes are enriched in microRNAs (miRNAs), considered as vital communication tools between cells, which have been proven as potential therapeutic method for neurological disease. Here, we investigated the role of miR129-5p-loaded mesenchymal stem cell (MSC)-derived exosomes in status epilepticus (SE) mice model.MethodsMice were divided into four groups: untreated control (CON group), kainic acid (KA)-induced SE groups (KA group), control exosome injection (KA + Exo-con group), miR129-5p-loaded exosome injection (KA + Exo-miR129-5p group). Hippocampal expression levels of miR129-5p, HMGB1, and TLR4 were compared among groups. Nissl and Fluoro-jade B staining were conducted to evaluate neuronal damage. In addition, immunofluorescence staining for IBA-1 and GFAP was performed to assess glial cell activation, and inflammatory factor content was determined by ELISA. Hippocampal neurogenesis was assessed by BrdU staining.ResultsThe expression of HMGB1 was increased after KA-induced SE and peaking at 48 h, while hippocampal miR129-5p expression decreased in SE mice. Exo-miR129-5p injection reversed KA-induced upregulation of hippocampal HMGB1 and TLR4, alleviated neuronal damage in the hippocampal CA3, reduced IBA-1 + and GFAP + staining intensity, suppressed SE-associated increases in inflammatory factors, and decreased BrdU + cell number in dentate gyrus.ConclusionsExosomes loaded with miR129-5p can protect neurons against SE-mediated degeneration by inhibiting the pro-inflammatory HMGB1/TLR4 signaling axis.Graphical
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.