Abstract

BackgroundMicroRNAs (miRNAs) have been identified as important participants in the development of atherosclerosis (AS). The present study explored the role of miR-128-3p in the dysfunction of vascular smooth muscle cells (VSMCs) and the underlying mechanism.MethodsHuman VSMCs and ApoE knockout (ApoE−/−) C57BL/6J mice were used to establish AS cell and animal models, respectively. Expression levels of miR-128-3p, forkhead box O4 (FOXO4) and matrix metallopeptidase 9 (MMP9) were detected using qRT-PCR and Western blot, respectively. CCK-8, BrdU, and Transwell assays as well as flow cytometry analysis were performed to detect the proliferation, migration and apoptosis of VSMCs. Levels of inflammatory cytokines and lipids in human VSMCs, mice serum and mice VSMCs were also determined. The binding site between miR-128-3p and 3′UTR of FOXO4 was confirmed using luciferase reporter gene assay.ResultsMiR-128-3p was found to be decreased in AS patient serum, ox-LDL-treated VSMCs, AS mice serum and VSMCs of AS mice. Transfection of miR-128-3p mimics suppressed the proliferation and migration of VSMCs, accompanied by the promoted apoptosis and the decreased levels of inflammatory cytokines. Further experiments confirmed the interaction between miR-128-3p and FOXO4. Augmentation of FOXO4 or MMP9 reversed the effects of miR-128-3p. Besides, miR-128-3p inhibited triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) but increased high-density lipoprotein cholesterol (HDL-C) in the serum of AS mice.ConclusionMiR-128-3p repressed the proliferation and migration of VSMCs through inhibiting the expressions of FOXO4 and MMP9.

Highlights

  • Atherosclerosis (AS) is an inflammatory vascular disease, which contributes to the pathogenesis of a variety of cardiovascular diseases (CVD) (Gholipour et al 2018)

  • It has been found that oxidized low density lipoprotein (OX-LDL)-treated RAW264.7 cells present remarkable reduction of miR-128-3p expression in a time and dose-dependent manner; while after the transfection of miR-128-3p mimics, it was found that both apoptosis and inflammatory responses were suppressed in RAW264.7 cells (Chen et al 2018)

  • Results miR‐128‐3p expression was abnormally down‐regulated during AS progression First of all, with bioinformatics analysis, it was found that in Apobtm2Sgy/Ldltm1Her double knockout mice, miR-128-3p expression was significantly reduced in AS lesions in the ascending aorta of mice fed with HFD compared with mice fed with normal diet (ND) after 6 weeks of feeding, based on the public miRNA expression profile dataset GSE89858, but no significant changes were found after 18 and 30 weeks of feeding (Fig. 1a–c)

Read more

Summary

Introduction

Atherosclerosis (AS) is an inflammatory vascular disease, which contributes to the pathogenesis of a variety of cardiovascular diseases (CVD) (Gholipour et al 2018). It has been found that oxidized low density lipoprotein (OX-LDL)-treated RAW264.7 cells present remarkable reduction of miR-128-3p expression in a time and dose-dependent manner; while after the transfection of miR-128-3p mimics, it was found that both apoptosis and inflammatory responses were suppressed in RAW264.7 cells (Chen et al 2018). This suggests that miR-128-3p can repress ox-LDL-induced inflammation and oxidative stress in macrophages, and inhibit the progression of AS. The binding site between miR-128-3p and 3′UTR of FOXO4 was confirmed using luciferase reporter gene assay

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call