Abstract

Osteosarcoma (OS) is the most common malignant bone tumor in children and young adults, the early symptoms and signs of which are non-specific. The discovery of microRNAs (miRNAs) provides a new avenue for the early diagnosis and treatment of OS. miR-126 has been reported to be highly expressed in vascularized tissues, and is recently widely studied in cancers. Herein, we explored the expression and significance of miR-126 in OS. Using TaqMan RT-PCR analysis, we analyzed the expression of miR-126 in 32 paired OS tumor tissues and 4 OS cell lines and found that miR-126 was consistently under-expressed in OS tissues and cell lines compared with normal bone tissues and normal osteoblast cells (NHOst), respectively. As miR-126 is significantly decreased in OS tissues and cell lines, we sought to compensate for its loss through exogenous transfection into MG-63 cells with a miR-126 mimic. Ectopic expression of miR-126 inhibited cell proliferation, migration and invasion, and induced apoptosis of MG-63 cells. Moreover, bioinformatic prediction suggested that the sex-determining region Y-box 2 (Sox2) is a target gene of miR-126. Using mRNA and protein expression analysis, luciferase assays and rescue assays, we demonstrate that restored expression of Sox2 dampened miR-126-mediated suppression of tumor progression, which suggests the important role of miR-126/Sox2 interaction in tumor progression. Taken together, our data indicate that miR-126 functions as a tumor suppressor in OS, which exerts its activity by suppressing the expression of Sox2.

Highlights

  • IntroductionOsteosarcoma (osteogenic sarcoma, OS) is the most common malignant bone tumor in children and young adults

  • Osteosarcoma is the most common malignant bone tumor in children and young adults

  • Since the involvement of miR-126 in osteosarcoma carcinogenesis is largely unexplored, we have investigated osteosarcoma cell lines under-expressing miR-126, with the aim to study its effects on cellular progressions and to identify the mechanisms involved

Read more

Summary

Introduction

Osteosarcoma (osteogenic sarcoma, OS) is the most common malignant bone tumor in children and young adults. Combined with Ewing’s sarcoma, OS represents 6% of all childhood cancers [1]. The early symptoms and signs including pain and a palpable mass are totally non-specific, leading to a delay in early diagnosis. A previous study reported that the average diagnostic delay for OS is 9 weeks, and the most common misdiagnosis is tendonitis [2]. Great efforts have been exerted to interpret the underlying mechanisms in OS carcinogenesis, the survival of OS reached a plateau, and the prognosis of advanced OS remains poor [3]. As the benefits from traditional chemotherapy have seemingly been maximized, novel diagnostic biomarkers and therapeutic alternatives for OS patients are needed

Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call