Abstract

Mast cells (MCs) are key regulators of IgE-mediated allergic inflammation. Cell-derived extracellular vesicles (EVs) contain bioactive compounds such as microRNAs. EVs can transfer signals to recipient cells, thus using a novel mechanism of cell-to-cell communication. However, whether MC-derived EVs are involved in FcεRI-mediated allergic inflammation is unclear. We sought to investigate the effect of EVs derived from FcεRI-aggregated human MCs on the function of human group 2 innate lymphoid cells (ILC2s). Human cultured MCs were sensitized with and without IgE for 1 hour and then incubated with anti-IgE antibody, IL-33, or medium alone for 24 hours. EVs in the MC supernatant were isolated by using ExoQuick-TC. Coculture of ILC2s with EVs derived from the FcεRI-aggregated MCs significantly enhanced IL-5 production and sustained upregulation of IL-5 mRNA expression in IL-33-stimulated ILC2s, but IL-13 production and IL-13 mRNA expression were unchanged. miR103a-3p expression was upregulated in IL-33-stimulated ILC2s that had been cocultured with EVs derived from anti-IgE antibody-stimulated MCs. Transduction of an miR103a-3p mimic to ILC2s significantly enhanced IL-5 production by IL-33-stimulated ILC2s. miR103a-3p promoted demethylation of an arginine residue of GATA3 by downregulating protein arginine methyltransferase 5 (PRMT5) mRNA. Reduction of protein arginine methyltransferase 5 expression in ILC2s by using a small interfering RNA technique resulted in upregulation of IL-5 production by IL-33-stimulated ILC2s. Furthermore, the level of miR103a-3p expression was significantly higher in EVs from sera of patients with atopic dermatitis than in EVs from nonatopic healthy control subjects. Eosinophilic allergic inflammation may be exacerbated owing to ILC2 activation by MC-derived miR103a-3p.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.