Abstract

MicroRNAs (miRNAs) are short non-coding RNAs that negatively modulate gene expression at the post-transcriptional level and are known to be involved in the cross-talk between the host and virus. Using a standard plaque assay and real-time PCR method, we found that ectopic expression of miR-101 could significantly suppress herpes simplex virus-1 (HSV-1) replication, and that blocking endogenous miR-101 could increase viral progeny without affecting cell viability. Bioinformatics analysis indicates the 3′ untranslated region (UTR) of mitochondrial ATP synthase subunit beta (ATP5B) has a putative binding site for miR-101. MiR-101 can directly bind to ATP5B 3′UTR and negatively regulate ATP5B expression. Using a RNA interference technique, knockdown of ATP5B significantly inhibited HSV-1 replication, indicating that ATP5B functions as a pro-viral factor. The ectopic expression of ATP5B lacking the 3′UTR could override the suppressive effect of miR-101 on HSV-1 replication. A concordant inverse correlation between miR-101 and ATP5B was observed in HSV-1-infected HeLa cells. Up-regulation of miR-101 expression may play a role in repressing productive HSV-1 replication by targeting ATP5B. Exploring the role of host-encoded miRNA in the regulation of viral infection would enable us to better understand the intricate networks of host–pathogen interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call