Abstract

BackgroundWe have previously reported that extracellular vesicles (EVs) derived from osteoblastic, osteoclastic and mixed prostate cancer cells promote osteoclast differentiation and inhibit osteoblast differentiation via transferring miR-92a-1-5p. In the present study, we focused on engineering miR-92a-1-5p into EVs and determining any therapeutic roles and mechanisms of the engineered EVs.MethodsA stable prostate cancer cell line (MDA PCa 2b) overexpressing miR-92a-1-5p was constructed by lentivirus, and EVs were isolated by ultracentrifugation. The overexpression of miR-92a-1-5p in both cells and EVs was tested using qPCR. Osteoclast function was evaluated by Trap staining, mRNA expression of osteoclastic markers ctsk and trap, immunolabeling of CTSK and TRAP and microCT using either in vitro and in vivo assays. Target gene of miR-92a-1-5p was proved by a dual-luciferase reporter assay system. siRNAs were designed and used for transient expression in order to determine the role of downstream genes on osteoclast differentiation.ResultsStable overexpression cells of miRNA-92a-5p was associated with EVs upregulating this microRNA, as confirmed by qPCR. Further, miR-92a-1-5p enriched EVs promote osteoclast differentiation in vitro by reducing MAPK1 and FoxO1 expression, associated with increased osteoclast function as shown by TRAP staining and mRNA expression of osteoclast functional genes. siRNA targeting MAPK1 or FoxO1 resulted in similar increase in osteoclast function. In vivo, the miR-92a-1-5p enriched EVs given via i.v. injection promote osteolysis, which was associated with reduction of MAPK1 and FoxO1 expression in bone marrow.ConclusionThese experiments suggest that miR-92a-1-5p enriched EVs regulate osteoclast function via reduction of MAPK1 and FoxO1.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call