Abstract

The irrefutable change in the expression of brain-enriched microRNAs (miRNAs) following ischemic stroke has promoted the development of radical miRNA-based therapeutics encompassing neuroprotection and neuronal restoration. Our previous report on the systems-level prediction of miR-9 in post-stroke-induced neurogenesis served as a premise to experimentally uncover the functional role of miR-9 in post-ischemic neuronal survival and regeneration. The oxygen-glucose deprivation (OGD) in SH-SY5Y cells significantly reduced miR-9 expression, while miR-9 mimic transfection enhanced post-ischemic neuronal cell viability. The next major objective involved the execution of a drug repositioning strategy to augment miR-9 expression via structure-based screening of Food and Drug Administration (FDA)-approved drugs that bind to Histone Deacetylase 4 (HDAC4), a known miR-9 target. Glucosamine emerged as the top hit and its binding potential to HDAC4 was verified by Molecular Dynamics (MD) Simulation, Drug Affinity Responsive Target Stability (DARTS) assay, and MALDI-TOF MS. It was intriguing that the glucosamine treatment 1-h post-OGD was associated with the increased miR-9 level as well as enhanced neuronal viability. miR-9 mimic or post-OGD glucosamine treatment significantly increased the cellular proliferation (BrdU assay), while the neurite outgrowth assay displayed elongated neurites. The enhanced BCL2 and VEGF parallel with the reduced NFκB1, TNF-α, IL-1β, and iNOS mRNA levels in miR-9 mimic or glucosamine-treated cells further substantiated their post-ischemic neuroprotective and regenerative efficacy. Hence, this study unleashes a potential therapeutic approach that integrates neuronal survival and regeneration via small-molecule-based regulation of miR-9 favoring long-term recovery against ischemic stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call