Abstract

The regulative effects of microRNAs (miRNAs) on responses of Schwann cells to a nerve injury stimulus are not yet clear. In this study, we noted that the expression of eight miRNAs was downregulated at different time points following rat sciatic nerve transection, and found that 368 potential targets of these eight miRNAs were mainly involved in phenotypic modulation of Schwann cells. Of these miRNAs, miR-9 was identified as an important functional regulator of Schwann cell migration that was a crucial regenerative response of Schwann cells to nerve injury. In vitro, upregulated expression of miR-9 inhibited Schwann cell migration, whereas silencing of miR-9 promoted Schwann cell migration. Intriguingly, miR-9 exerted this regulative function by directly targeting collagen triple helix repeat containing protein 1 (CTHRC1), which in turn inactivated downstream Rac1 GTPase. Rac1 inhibitor reduced the promotive effects of anti-miR-9 on Schwann cell migration. In vivo, high expression of miR-9 reduced Schwann cell migration within a regenerative nerve microenvironment. Collectively, our results confirmed the role of miR-9 in regulating Schwann cell migration after nerve injury, thus offering a new approach to peripheral nerve repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.