Abstract
The fast production of effector cytokines, such as IL-2, is essential for the autocrine function in the rapid activation of naive CD4(+) T cells. Here, we show that the microRNA (miRNA) pathway plays an important role in the posttranscriptional regulation of proinflammatory cytokines in human CD4(+) T cells. miRNAs are small noncoding molecules that act as posttranscriptional regulators of gene expression by binding to the 3' untranslated region of target mRNAs. Using microarray and deep sequencing approaches, we detected an increase in the abundance of miR-9 in activated human CD4(+) T cells. To determine the impact of miR-9 on immune responses, we analyzed its effect on two putative target genes, PRDM1, which encodes for the transcription factor Blimp-1 (B lymphocyte-induced maturation protein-1), and Bcl-6 (B cell lymphoma-6 protein). Suppression of miR-9 led to increased expression of PRDM1 and Bcl-6, which subsequently resulted in diminished secretion of IL-2 and IFN-γ. Our data provide evidence that the abundance of Blimp-1, and consequently the secretion of proinflammatory cytokines, is regulated in two ways: (i) transcriptional regulation by activation of CD4(+) T cells and (ii) posttranscriptional regulation by enhanced miR-9 expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.