Abstract

MicroRNA-9-5p (miR-9-5p) is highly expressed in the brain and has been implicated in the risk of schizophrenia. We compared the expression levels of miR-9-5p in schizophrenia cases and healthy controls and evaluated whether regulatory targets of miR-9-5p are enriched in schizophrenia genome-wide risk genes. Literature-based analysis was conducted to construct molecular pathways connecting miR-9-5p and schizophrenia. We found that the expression levels of miR-9-5p were down-regulated in the peripheral blood of schizophrenia patients compared with those in healthy controls. miR-9-5p can regulate 24 out of the 1136 genome-wide risk genes of schizophrenia, which was higher than by chance (hypergeometric test P = 4.09E−06). The literature-based analysis showed that quantitative genetic changes driven by miR-9 exert more inhibitory (the IL1B, ABCB1, FGFR1 genes) than promoting (the INS gene) effects on schizophrenia, suggesting that miR-9 may protect against schizophrenia. Our results suggest that miR-9-5p deficiency may contribute to the development of schizophrenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call