Abstract
Chemotherapy is an important treatment option for gastric cancer (GC); however, chemotherapy usually fails due to drug resistance, particularly multidrug resistance (MDR). In our previous studies, microRNA (miR)‑874 was demonstrated to serve an important role in tumour growth, apoptosis and angiogenesis. In the present study, the precise roles and underlying mechanisms of miR‑874 in MDR were investigated in GC. The overexpression of miR‑874 reversed cancer cell drug resistance invitro. According to reporter gene and western blot assays, Autophagy‑related16‑like1(ATG16L1) was identified as a direct target of miR‑874. ATG16L1 was also demonstrated to be positively associated with autophagy. Reducing the expression of ATG16L1 and inhibiting the occurrence of autophagy sensitized GC cells to chemotherapy. Thus, the miR‑874/ATG16L1/autophagy regulatory loop was demonstrated to serve an important role in MDR in GC. Furthermore, miR‑874 may be used as a prognostic factor in GC. Overall, miR‑874 could inhibit autophagy and sensitize GC cells to chemotherapy via the target gene ATG16L1, highlighting the potential clinical application of miR‑874 in chemotherapeutic resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.