Abstract

Lactate produced by glycolysis in Sertoli cells (SCs) is the main energy substrate for developing germ cells and plays a vital role in spermatogenesis. MicroRNAs (miRNAs) function as posttranscriptional regulators of gene expression in biological processes. We have previously shown that hyperthermia (43°C, 30 min) promotes lactate secretion by inhibiting phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) in cultured immature boar SCs. However, it is unclear whether miRNAs are involved in AMPK-modulated glycolysis in SCs. In the present study, we identified 349 miRNAs (227 upregulated and 122 downregulated) in hyperthermia-treated boar SCs by next-generation high-throughput RNA sequencing. MiR-8-3p, which was found to be a novel upregulated miRNA in hyperthermia-treated SCs, suppressed the expression of AMPK upstream genes (protein phosphatase 2 subunit B, PPP2R5B), and further downregulated the expression of p-AMPK. The miR-8-3p mimic upregulated expression of glucose transporter 3, lactate dehydrogenase A and monocarboxylate transporter 1, and increased lactic acid dehydrogenase activity, lactate secretion, and ATP depletion in SCs; the miR-8-3p inhibitor had the opposite effects on these parameters. Our findings indicate that miR-8-3p acts as a novel regulator of AMPK-modulated lactate secretion by targeting PPP2R5B in hyperthermic boar SCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.