Abstract

The transcription factor activator protein 1 (AP-1) is formed through the dimerization of immediate-early genes Fos and Jun family members. Activator protein 1 is known as a pivotal regulator of major biological events such as cell proliferation, differentiation, organogenesis, memory formation, and apoptosis. During a search for microRNAs (miRNAs; small, endogenous, noncoding RNAs that repress gene expression of target mRNAs in animals posttranscriptionally) that are differentially expressed in the mouse paraventricular and supraoptic nuclei after 10 days of drinking 2% saline, one candidate microRNA that is relatively highly expressed, mmu-miR-7b (miR-7b), was studied further because sequence analysis suggested a likely interaction with the 3' untranslated region of Fos mRNA. We show that miR-7b expression inhibits Fos translation in vitro and that it and its host gene are prominently expressed in the PVN and other brain areas, including the suprachiasmatic nucleus. No effect on Fos mRNA levels was observed. Normally, Fos is expressed at low to undetectable levels in cells, but it shows rapid induction and decay after acute stimuli. Various pathways have been identified through which Fos family proteins are degraded; our results indicate a significant additional mechanism by which Fos protein and activity may be regulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.