Abstract

Periodontitis (PD) is a multifactorial inflammatory disease associated with periodontopathic bacteria. Lysine-specific demethylase 1 (LSD1), a type of histone demethylase, has been implicated in the modulation of the inflammatory response process in oral diseases by binding to miRNA targets. This study investigates the molecular mechanisms by which miRNA binds to LSD1 and its subsequent effect on osteogenic differentiation. First, human periodontal ligament stem cells (hPDLSCs) were isolated, cultured, and characterized. These cells were then subjected to lipopolysaccharide (LPS) treatment to induce inflammation, after which osteogenic differentiation was initiated. qPCR and western blot were employed to monitor changes in LSD1 expression. Subsequently, LSD1 was silenced in hPDLSCs to evaluate its impact on osteogenic differentiation. Through bioinformatics and dual luciferase reporter assay, miR-708-3p was predicted and confirmed as a target miRNA of LSD1. Subsequently, miR-708-3p expression was assessed, and its role in hPDLSCs in PD was evaluated through overexpression. Using chromatin immunoprecipitation (ChIP) and western blot assay, we explored the potential regulation of osterix (OSX) transcription by miR-708-3p and LSD1 via di-methylated H3K4 (H3K4me2). Finally, we investigated the role of OSX in hPDLSCs. Following LPS treatment of hPDLSCs, the expression of LSD1 increased, but this trend was reversed upon the induction of osteogenic differentiation. Silencing LSD1 strengthened the osteogenic differentiation of hPDLSCs. miR-708-3p was found to directly bind to and negatively regulate LSD1, leading to the repression of OSX transcription through demethylation of H3K4me2. Moreover, overexpression of miR-708-3p was found to promote hPDLSCs osteogenic differentiation in inflammatory microenvironment. However, the protective effect was partially attenuated by reduced expression of OSX. Our findings indicate that miR-708-3p targetedly regulates LSD1 to enhance OSX transcription via H3K4me2 methylation, ultimately promoting hPDLSCs osteogenic differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.