Abstract

BackgroundCoronary artery disease (CAD), the leading cause of mortality globally, arises from atherosclerotic blockage of the coronary arteries. Meta-vinculin (meta-VCL), a large spliced isoform of VCL, co-localizes in muscular adhesive structures and plays significant roles in cardiac physiology and pathophysiology. This study aimed to identify microRNAs (miRNAs) regulating meta-VCL expression and investigate the expression alterations of the miRNAs of interest and meta-VCL as potential biomarkers in the serum of CAD patients. MethodsBioinformatics tools were employed to select miRNAs targeting meta-VCL. Cell-based ectopic expression analysis and a dual-luciferase assay were used to examine the interactions between miRNAs and meta-VCL. An ELISA assessed the concentrations of interleukin-6 (IL-6), IL-10, and tumor necrosis factor-α (TNF-α). MiRNA and meta-VCL expression patterns and biomarker suitability were evaluated in serum samples from CAD and non-CAD individuals using real-time PCR. A cardiac cell-line data set and CAD blood exosome samples were analyzed using bioinformatics and ROC curve analyses, respectively. ResultsmiR-6721-5p directly interacted with the putative target sites at the 3′-UTR of meta-VCL and regulated its expression. IL-10 and TNF-α concentrations, which may act as anti-inflammatory factors, decreased following miR-6721-5p upregulation and meta-VCL downregulation. Bioinformatics and experimental expression analyses confirmed downregulated meta-VCL expression and upregulated miR-6721-5p expression in CAD samples. ROC curve analysis yielded an AUC score of 0.705 (P = 0.018), indicating the potential suitability of miR-6721-5p as a biomarker for CAD. ConclusionsmiR-6721-5p plays a regulatory role in meta-VCL expression and may contribute to CAD development by reducing anti-inflammatory factors. These findings suggest that miR-6721-5p could serve as a novel biomarker in the pathogenesis of CAD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.