Abstract

Psoriasis is considered as a common chronic and relapsing inflammatory skin disease. MicroRNAs (miRNAs) were found to be related with psoriasis pathogenesis. Nevertheless, the function of miR-617 in psoriasis is still unclear. The miR-617 RNA level was detected using quantitative reverse transcription-PCR (qRT-PCR). Western blot analysis examined the protein level. Cell proliferation was analyzed via cell counting kit-8 (CCK-8) assay. Flow cytometry analysis detected cell cycle and apoptosis. The relationship between miR-617 and forkhead box protein O4 (FOXO4) was confirmed through dual luciferase assay. The miR-617 was up-regulated in psoriatic skin tissues and interleukin-22 (IL-22)-stimulated immortalized human keratinocyte HaCaT cells. Moreover, miR-617 mimics promoted proliferation, cell cycle, and suppressed apoptosis in IL-22-stimulated HaCaT cells. However, miR-617 inhibitor showed opposite effects. Additionally, FOXO4 was a target of miR-617. FOXO4 was down-regulated in psoriatic skin tissues and IL-22-stimulated HaCaT cells. Negative correlation between miR-617 and FOXO4 was identified. FOXO4 overexpression alleviated the effects of miR-617 proliferation, cell cycle and apoptosis in the IL-22-stimulated HaCaT cells. These results demonstrate that miR-617 increases the growth of IL-22-stimulated keratinocytes through targeting FOXO4, which provides a new therapeutic target for psoriasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call