Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver cancer with high incidence and mortality. MiR-597-5p is downregulated in tumor tissues of HCC compared with non-tumor tissues. However, its role in HCC is still unknown. This study aims to assess the function of miR-597-5p in HCC development and investigate the underlying mechanism. To perform gain- and loss-of-function studies, SK-HEP-1 cells and Huh-7 cells were transfected with miR-597-5p mimics and inhibitor, respectively. MiR-597-5p markedly reduced the cell viability and the expression of Ki-67 in HCC cells. MiR-597-5p also repressed the cell cycle progression of HCC cells and the protein levels of cyclin D1 and CDK2. Moreover, miR597-5p inhibited the migration and invasion of HCC cells and decreased MMP2 and MMP9 levels. Transcriptional enhancer associate domain transcription factor 1 (TEAD1) was identified as a target of miR-597-5p by luciferase reporter assay. TEAD1 and its downstream target genes, CTGF and CYR61, were downregulated by miR-597-5p in HCC cells. Furthermore, miR-597-5p was demonstrated to function in HCC progression by targeting TEAD1 via TEAD1 expression gain and loss. Our study demonstrates that miR-597-5p represses the proliferation, migration, and invasion of HCC cells through targeting TEAD1, which provides a therapeutic target for HCC treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call