Abstract

The mechanisms of ovarian cancer generate chemotherapy resistance are still unclear. This study aimed to explore the role of microRNA (miR)-590-5p in regulating hMSH2 expression and cisplatin resistance in ovarian cancer. MiR-590-5p was identified as a regulator of hMSH2 with miRDB database and Target Scan database. Then cisplatin sensitive cell line (SKOV3) and resistant cell line (SKOV3-DDP) of ovarian cancer were cultured for cell functional assay and molecular biology assay. The expression levels of MiR-590-5p and hMSH2 were compared between the two cell lines. Dual luciferase reporter assay was used to verify the targeted regulatory relationship between miR-590-5p and hMSH2. CCK-8 assay and cell apoptosis assay were utilized to assess the role of MiR-590-5p and hMSH2 in cell viability under cisplatin. The expression of hMSH2 was significantly decreased, and miR-590-5p was significantly up-regulated in SKOV3-DDP. Up-regulation of hMSH2 weakened the viability of SKOV3 and SKOV3-DDP cell under cisplatin. Transfection with miR‑590-5p mimics reduced the expression of hMSH2 and enhanced the viability of ovarian cancer cells under cisplatin, whereas inhibition of miR‑590-5p increased the expression of hMSH2, and decreased ovarian cancer cells' viability under cisplatin. Furthermore, luciferase reporter assay showed that hMSH2 was a direct target of miR-590-5p. The present study demonstrates that miR‑590-5p promotes cisplatin resistance of ovarian cancer via negatively regulating hMSH2 expression. Inhibition of miR‑590-5p decreases ovarian cancer cells' viability under cisplatin. Thus miR‑590-5p and hMSH2 may serve as therapeutic targets for cisplatin resistant ovarian cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.