Abstract

BackgroundThe chemoresistance of breast cancer (BC) has become the main cause of treatment failure. MicroRNAs (miRNAs) play a critical role in tumorigenesis, development, and chemoresistance, but the underlying mechanism of miR-519d in BC development and chemotherapy sensitivity remains to be elucidated.MethodsThe levels of miR-519d-5p in BC samples and cell lines were measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Cell viability was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The in vivo effect of miR-519d-5p on tumor formation and doxorubicin response were investigated in a xenograft study. Bioinformatic analysis, luciferase reporter assay, RT-qPCR, and western blotting were conducted to validate RELA as a target gene of miR-519d-5p. We performed RT-qPCR, western blotting, chromatin immunoprecipitation (ChIP), and DNA pull down to verify miR-519d-5p as a transcriptional target of RELA.ResultsThis study found that miR-519d-5p was expressed at lower levels in BC cells and tissues, and overexpression of miR-519d-5p sensitized BC to chemotherapy both in vitro and in vivo. Meanwhile, the expression of RELA was negatively correlated with miR-519d-5p. We then showed that RELA is one of the targets of miR-519d-5p: miR-519d-5p inhibited RELA expression by directly binding to its 3'-unstranslated region (3'-UTR). Conversely, it was verified that miR-519d-5p is one of the targets of transcription factor RELA, and RELA repressed miR-519d-5p by binding to the promoter region of miR-519d-5p, which forms a feedback loop.ConclusionsOverall, the results provide a novel therapeutic strategy for the combinational use of miR-519d-5p and chemotherapeutic agents to overcome chemo-resistance by forming a negative feedback loop with RELA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call