Abstract

Atrial fibrillation (AF) is a condition that heart beats quaveringly or irregularly, which causes blood clots, heart failure, stroke, and other heart-related complications. Therefore, early diagnosis and timely preventions are necessary for AF treatment. Compelling evidence indicated that microRNAs (miRNAs) become emerging biomarkers of AF; thus, we aimed to investigate the possibility of miR-455-5p as an AF marker to provide a new strategy for early diagnosis of AF. A minipump containing angiotensin II was implanted into mice to induce AF, and adeno-associated virus (AAV) carrying anti-miR-negative control (NC) or anti-miR-455-5p was injected into the pericardial space of mice respectively. Next, myocytes isolated from wild-type newborn mice were stimulated with angiotensin II and anti-miR-NC or anti-miR-455-5p mimic. The results showed that the expression of miR-455-5p was positively correlated with the severity of AF, and miR-455-5p mimic accelerated the progression of AF by directly binding to its target gene suppressor of cytokines signaling 3 (SOCS3), leading to the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway. On the contrary, inhibition of miR-455-5p expression effectively ameliorated AF. In conclusion, miR-455-5p might serve as a biomarker of AF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.