Abstract
ObjectiveCardiac fibrosis is an important contributor to atrial fibrillation (AF). Our aim was to identify biomarkers for AF using bioinformatics methods and explore the regulatory mechanism of miR-450a-2-3p in cardiac fibrosis in mice.MethodsTwo datasets, GSE115574 and GSE79768, were obtained from the Gene Expression Omnibus (GEO) database and subsequently merged for further analysis. Differential gene expression analysis was performed to identify differentially expressed genes (DEGs) and miR-450a-2-3p-related differentially expressed genes (MRDEGs). To investigate the underlying mechanism of cardiac fibrosis, a mouse model was established by treating mice with isoproterenol (ISO) and the miR-450a-2-3p agomir.ResultsA total of 127 DEGs and 31 MRDEGs were identified and subjected to Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to determine the functions and pathways involved in AF. In the animal model, histological analysis using HE and Masson staining, as well as quantification of the collagen volume fraction (CVF), was performed. The increased expression of α-smooth muscle actin (α-SMA), collagen type I (COL1), collagen type III (COL3), and extracellular signal-regulated kinase 1/2 (ERK(1/2)) at both the transcriptional and translational levels indicated the significant development of myocardial fibrosis in mice induced with isoproterenol (ISO). In addition, the cross-sectional area of cardiomyocytes and the expression of atrial natriuretic peptide (NPPA) and brain natriuretic peptide (NPPB) were increased in the ISO group compared with the control group. However, after overexpression of the miR-450a-2-3p agomir through caudal vein injection, there was a notable improvement in cardiac morphology in the treated group. The expression levels of α-SMA, COL1, COL3, ERK(1/2), NPPA, and NPPB were also significantly decreased.ConclusionOur study reveals the mechanistic connection between ISO-induced myocardial fibrosis and the miR-450a-2-3p/ERK(1/2) signaling pathway, highlighting its role in the development of cardiac fibrosis. Modulating miR-450a-2-3p expression and inhibiting ERK(1/2) activation are promising approaches for therapeutic intervention in patients with AF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.