Abstract

Ets-related gene (ERG) is overexpressed as a fusion protein in prostate cancer. During metastasis, the pathological role of ERG is associated with cell proliferation, invasion, and angiogenesis. Here, we hypothesized that miRNAs regulate ERG expression through its 3'UTR. Several bioinformatics tools were used to identify miRNAs and their binding sites on 3'UTR of ERG. The selected miRNAs expression was analyzed in prostate cancer samples by qPCR. The miRNAs overexpression was induced in prostate cancer cells (VCaP) to analyze ERG expression. Reporter gene assay was performed to evaluate the ERG activity in response to selected miRNAs. The expression of ERG downstream target genes was also investigated through qPCR after miRNAs overexpression. To observe the effects of selected miRNAs on cell proliferation and migration, scratch assay was performed to calculate the cell migration rate. miR-4482 and miR-3912 were selected from bioinformatics databases. miR-4482 and -3912 expression were decreased in prostate cancer samples, as compared to controls (p<0.05 and p<0.001), respectively. Overexpression of miR-4482 and miR-3912 significantly reduced ERG mRNA (p<0.001 and p<0.01), respectively) and protein (p<0.01) in prostate cancer cells. The transcriptional activity of ERG was significantly reduced (p<0.01) in response to miR-4482 and-3912. ERG angiogenic targets and cell migration rate was also reduced significantly (p<0.001) after miR-4482 and -3912 over-expression. This study indicates that miR-4482 and -3912 can suppress the ERG expression and its target genes, thereby, halt prostate cancer progression. These miRNAs may be employed as a potential therapeutic target for the miRNA-based therapy against prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.