Abstract

The insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β signal pathways are both recognized as important in regulating cancer prognosis, such as the epithelial-to-mesenchymal transition (EMT) and cell invasion. However, cross-talk between these two signal pathways in glioblastoma multiforme (GBM) is still unclear. In the present study, by analyzing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GSE) 4412, GBM patients with higher IGF-1 levels exhibited poorer survival. Genes positively correlated with IGF-1 were enriched in EMT and TGF-β signal pathways. IGF-1 treatment enhanced mesenchymal marker expressions and GBM cell invasion. A significant positive correlation was observed for IGF-1 with TGF-β1 (TGFB1) or TGF-β receptor 2 (TGFBR2), both of which participate in TGF-β signaling and are risk genes in the GBM process. IGF-1 stimulation promoted both TGFB1 and TGFBR2 expressions. LY2157299, a TGF-β signaling inhibitor, attenuated IGF-1-enhanced GBM cell invasion and mesenchymal transition. By analyzing IGF-1-regulated microRNA (miR) profiles, miR-4286 was found to be significantly downregulated in IGF-1-treated cells and could be targeted to both TGFB1 and TGFBR2. Overexpression of miR-4286 significantly attenuated expressions of the IGF-1-mediated mesenchymal markers, TGFB1 and TGFBR2. Using kinase inhibitors, only U0126 treatment showed an inhibitory effect on IGF-1-reduced miR-4286 and IGF-1-induced TGFB1/TGFBR2 expressions, suggesting that MEK/ERK signaling is involved in the IGF-1/miR-4286/TGF-β signaling axis. Finally, our results suggested that miR-4286 might act as a tumor suppressive microRNA in inhibiting IGF-1-enhanced GBM cell invasion. In conclusion, IGF-1 is connected to TGF-β signaling in regulating the mesenchymal transition and cell invasion of GBM through inhibition of miR-4286. Our findings provide new directions and mechanisms for exploring GBM progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.