Abstract
BackgroundGastric cancer (GC) is one of the most common and lethal malignancies worldwide. Therefore, a better understanding of the mechanism of its malignant progression and chemoresistance will be helpful for the treatment of patients with GC.MethodsThe gene expression profiles downloaded from GEO database and the TargetScan Human were used to identify the key regulation model based on miRNA by bioinformatics analyses. The regulation of miRNA to target was clarified by luciferase assay, qPCR, and Western blotting. Then, the in vitro and in vivo experiments were further conducted by overexpression or knockdown of miRNA and/or target to examine the regulation effects and clarify the mechanism.ResultsIn the present study, miR-424-3p was identified to be differentially expressed among normal gastric, GC, and chemoresistant GC tissues. Target analysis results indicated that ABCC2, a chemoresistance-related gene, was a regulated target of miR-424-3p. The in vitro and in vivo experiment results further demonstrated that miR-424-3p relied on ABCC2-induced chemoresistance to promote GC proliferation and metastasis.ConclusionOverall, this study revealed that miR-424-3p contributed to the malignant progression and chemoresistance of GC. Thus, miR-424-3p could be a potential target for the treatment of GC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.