Abstract
PurposeMicroRNAs (miRNAs) are dominant cargo in exosomes and act as master regulators of cell function, inhibiting mRNA translation and affecting gene silencing. Some aspects of tissue-specific miRNA transport in bladder cancer (BC) and its role in cancer progression are not fully understood. Materials and methodsA microarray was used to identify miRNAs in mouse bladder carcinoma cell line MB49 exosomes. Real-time reverse transcription polymerase chain reaction was used to examine the expression of miRNAs in BC and healthy donor serum. Western blotting and immunohistochemical staining were used to examine the expression of dexamethasone-induced protein (DEXI) in patients with BC. CRISPR-Cas 9 was used to knock out Dexi in MB49, and flow cytometry was performed to test cell proliferation ability and apoptosis under chemotherapy. Human BC organoid culture, miR-3960 transfection, and 293T-exosome-loaded miR-3960 delivery were used to analyze the effect of miR-3960 on BC progression. ResultsThe results showed that miR-3960 levels in BC tissue were positively correlated with patient survival time. Dexi was a major target of miR-3960. Dexi knockout inhibited MB49 cell proliferation and promoted cisplatin- and gemcitabine-induced apoptosis. Transfection of miR-3960 mimic inhibited DEXI expression and organoid growth. In parallel, 293T-exosome-loaded miR-3960 delivery and Dexi knockout significantly inhibited subcutaneous growth of MB49 cells in vivo. ConclusionOur results demonstrate the potential role of miR-3960-mediated inhibition of DEXI as a therapeutic strategy against BC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.