Abstract

BackgroundmicroRNAs contribute to the development and progression of chronic obstructive pulmonary disease (COPD). However, the underlying molecular mechanisms are largely unclear. The goal of this study was to investigate the roles of miR-378 in alveolar epithelial type II cells and identify molecular mechanisms which contribute to the pathogenesis of COPD.Materials and methodsHuman alveolar epithelial (A549) cells were cultured in Dulbecco’s Modified Eagle Medium. Cell proliferation was studied by using a cell counting kit-8 (CCK-8) and colony formation assays. Cell apoptosis and cell cycle were analyzed by flow cytometry and wound healing and Transwell were used to analyze the cell migration and. We performed bioinformatics analysis including target gene prediction, gene ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment and construction of protein-protein interaction (PPI) network. The expression of miR-378 and NPNT from publically available expression microarray of COPD lung tissues was analyzed.ResultsOverexpression of miR-378 significantly increases cell proliferation, migration, and suppress apoptosis. GO analysis demonstrated that the miR-378 involved in transcription, vascular endothelial growth factor receptor signaling pathway, phosphatidylinositol 3-kinase signaling, cell migration, blood coagulation, cell shape, protein stabilization and phosphorylation. Pathway enrichment showed that the 1,629 target genes of miR-378 were associated with mTOR, ErbB, TGF-β, MAPK, and FoxO signaling pathways. Notably, miR-378 directly targets Nephronectin in A549 cells, and miR-378 was upregulated while NPNT was downregulated in COPD lung tissue samples.ConclusionsThese findings suggest that miR-378 can regulate the proliferation, migration, and apoptosis of A549 cells and target NPNT. miR-378 increased in COPD lung tissues while NPNT decreased, and might prove a potential target for novel drug therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.