Abstract

MicroRNA miR-376c was expressed in normal intrahepatic biliary epithelial cells (HIBEpiC), but was significantly suppressed in the HuCCT1 intrahepatic cholangiocarcinoma (ICC) cell line. The biological significance of the down-regulation of miR-376c in HuCCT1 cells is unknown. We hypothesized that miR-376c could function as a tumor suppressor in these cells. To test this hypothesis, we sought the targets of miR-376c, and characterized the effect of its down-regulation on HuCCT1 cells. We performed proteomic analysis of miR-376c-overexpressing HuCCT1 cells to identify candidate targets of miR-376c, and validated these targets by 3′-UTR reporter assay. Transwell migration assays were performed to study the migratory response of HuCCT1 cells to miR-376c overexpression. Furthermore, microarrays were used to identify the signaling that were potentially involved in the miR-376c-modulated migration of HuCCT1. Finally, we assessed epigenetic changes within the potential promoter region of the miR-376c gene in these cells. Proteomic analysis and subsequent validation assays showed that growth factor receptor-bound protein 2 (GRB2) was a direct target of miR-376c. The transwell migration assay revealed that miR-376c significantly reduced epidermal growth factor (EGF)-dependent cell migration in HuCCT1 cells. DNA microarray and subsequent pathway analysis showed that interleukin 1 beta and matrix metallopeptidase 9 were possible participants in EGF-dependent migration of HuCCT1 cells. Bisulfite sequencing showed higher methylation levels of CpG sites upstream of the miR-376c gene in HuCCT1 relative to HIBEpiC cells. Combined treatment with the DNA-demethylating agent 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor trichostatin A significantly upregulated the expression of miR-376c in HuCCT1 cells. We revealed that epigenetic repression of miR-376c accelerated EGF-dependent cell migration through its target GRB2 in HuCCT1 cells. These findings suggest that miR-376c functions as a tumor suppressor. Since metastasis is the major cause of death in ICC, microRNA manipulation could lead to the development of novel anti-cancer therapy strategies for ICC.

Highlights

  • Deep sequencing and transcriptome analysis revealed the existence of non-coding RNAs in mammalian cells [1,2,3]

  • We revealed that epigenetic repression of miR-376c accelerated epidermal growth factor (EGF)-dependent cell migration by targeting growth factor receptor-bound protein 2 (GRB2) in HuCCT1 cells

  • We focused on functional studies of miR-376c, which is significantly downregulated in CC cell lines

Read more

Summary

Introduction

Deep sequencing and transcriptome analysis revealed the existence of non-coding RNAs (ncRNAs) in mammalian cells [1,2,3]. MicroRNAs (miRNAs) are single-stranded 19- to 25nucleotide ncRNAs that play a critical role in posttranscriptional gene regulation. Downregulation of miR-15 and miR-16 in most chronic lymphocytic leukemia cells leads to upregulation of anti-apoptotic B cell lymphoma 2 (Bcl-2) protein [8]. The increased levels of Ras protein in lung cancer cells leads to upregulated cell growth. The miR-200 family and miR-205 target zinc finger homeodomain enhancer-binding protein (ZEB) transcription factors, which are known to be inducers of the epithelial-mesenchymal transition in breast cancer [9]. Downregulation of these miRNAs are likely to be an essential early step in breast cancer metastasis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call