Abstract

Breast cancer is one of the most common malignancies and one of the leading causes of cancer-induced mortality among women. Over the past decades, the occurrence of breast cancer has been a significant increase. As documented in numerous researches, microRNAs (miRNAs) play vital roles in a wide range of biological processes associated with the occurrence and development of breast cancer. Nevertheless, the role of miR-370-5p in breast cancer remains obscure, and the possible molecular regulatory mechanism needs to be further explored. In this study, our results delineated that miR-370-5p was downregulated in breast cancer tissues and cell lines. Besides, miR-370-5p overexpression suppressed cell proliferation and invasion in breast cancer. MiR-370-5p downregulation exerted an opposite result. In addition, LUC7L3 was identified as a target gene for miR-370-5p. Similar with the results induced by miR-370-5p overexpression, LUC7L3 knockdown attenuated the proliferation and invasion ability of breast cancer cells. Moreover, the alternation of LUC7L3 expression reversed the regulatory effects of miR-370-5p on cell phenotypes in breast cancer. Overall, miR-370-5p may exert antitumor effect on breast cancer. Hence, miR-370-5p may serve as a novel therapeutic marker for the treatment of patients with breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call