Abstract

Glioma is one of the most pervasive and invasive primary malignancies in the central nervous system. Due to its abnormal proliferation, glioma remains hard to cure at present. Protein tyrosine phosphatase 1B (PTP1B) has been proved to be involved in the process of proliferation in many malignancies. However, whether PTP1B is involved in the proliferation of glioma and how it acts are still unclear. In this study, the PTP1B expressions in glioma tissues and cells were determined by quantitative real-time PCR and western blot analysis. The effects of PTP1B on the proliferation characteristics of glioma were explored using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation assay, and tumor xenografts in mice. We found that the protein and mRNA levels of PTP1B in glioma tissues were significantly higher than those in paired nontumor tissues. MTT and clone formation assays showed that PTP1B is closely related to human glioma cell proliferation. In addition, TargetScan revealed that miR-34c regulates PTP1B. Mechanistically, we proved that miR-34c negatively regulates PTP1B and then participates in the regulation of glioma cell proliferation in vivo. Collectively, these results suggested that miR-34c inhibits the proliferation of human glioma cells by targeting PTP1B, which will provide a potential target for the treatment of glioma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call