Abstract

Hyperhomocysteinemia (HHcy) promotes atherogenesis by modification of histone acetylation patterns and regulation of miRNA expression while the underlying molecular mechanisms are not well known. In this study, we investigated the effects of homocysteine (Hcy) on the expression of histone deacetylase 1 (HDAC1) and tested our hypothesis that Hcy-induced atherosclerosis is mediated by increased HDAC1 expression, which is regulated by miR-34a. The expression of HDAC1 increased and acetylation of histone H3 at lysine 9 (H3K9ac) decreased in the aorta of ApoE-/- mice fed with high methionine diet, whereas miR-34a expression was inhibited. Over-expression of HDAC1 inhibited H3K9ac level and promoted the accumulation of total cholesterol, free cholesterol, and triglycerides in the foam cells. Furthermore, up-regulation of miR-34a reduced HDAC1 expression and inhibited the accumulation of total cholesterol (TC), free cholesterol (FC), and triglycerides (TG) in the foam cells. These data suggest that HDAC1-related H3K9ac plays a key role in Hcy-mediated lipid metabolism disorders, and that miR-34a may be a novel therapeutic target in Hcy-related atherosclerosis. J. Cell. Biochem. 118: 4617-4627, 2017. © 2017 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.