Abstract

MiR-34a acts as a candidate tumour suppressor gene, and its expression is reduced in several cancer types. We aimed to study miR-34a expression in breast cancer and its correlation with tumour characteristics and clinical outcome, and regulatory links with other genes. We analysed miR-34a expression in 1,172 breast tumours on TMAs. 25% of the tumours showed high, 43% medium and 32% low expression of miR-34a. High miR-34a expression associated with poor prognostic factors for breast cancer: positive nodal status (p = 0.006), high tumour grade (p<0.0001), ER-negativity (p = 0.0002), HER2-positivity (p = 0.0002), high proliferation rate (p<0.0001), p53-positivity (p<0.0001), high cyclin E (p<0.0001) and γH2AX (p<0.0001). However, multivariate analysis adjusting for conventional prognostic factors indicated that high miR-34a expression in fact associated with a lower risk of recurrence or death from breast cancer (HR = 0.63, 95% CI = 0.41–0.96, p = 0.031). Gene expression analysis by differential miR-34a expression revealed an expression signature with an effect on both the 5-year and 10-year survival of the patients (p<0.001). Functional genomic analysis highlighted a novel regulatory role of the transcription factor MAZ, apart from the known control by p53, on the expression of miR-34a and a number of miR-34a targets. Our findings suggest that while miR-34a expression activation is a marker of aggressive breast tumour phenotype it exerts an independent effect for a lower risk of recurrence or death from breast cancer. We also present an expression signature of 190 genes associated with miR-34a expression. Our analysis for regulatory loops suggest that MAZ and p53 transcription factors co-operate in modulating miR-34a, as well as miR-34a targets involved in several cellular pathways. Taken together, these results suggest that the network of genes co-regulated with and targeted by miR-34a form a group of down-stream effectors that maybe of use in predicting clinical outcome, and that highlight novel regulatory mechanisms in breast cancer.

Highlights

  • MicroRNAs are short 18–24 nucleotide RNAs that work as post-transcriptional regulators by binding to sequences in the 39 untranslated region (39 UTR) of target mRNAs either through fully complementary or imperfect base-pairing, usually resulting in mRNA silencing [1,2]

  • The expression of miR-34a was investigated in an extensive series of breast tumours – altogether, samples from 1172 tumours were scored for miR-34a

  • Multivariate analysis, adjusting for the conventional adverse prognostic factors to evaluate the independent effect of miR-34a expression on breast cancer survival, indicated that miR-34a expression was associated with a lower risk of recurrence or death from breast cancer

Read more

Summary

Introduction

MicroRNAs (miRs) are short 18–24 nucleotide RNAs that work as post-transcriptional regulators by binding to sequences in the 39 untranslated region (39 UTR) of target mRNAs either through fully complementary or imperfect base-pairing, usually resulting in mRNA silencing [1,2]. The miR-34 family has become a promising topic in cancer research [6]. This miR family consists of three members, namely miR-34a, miR-34b and miR-34c, which are encoded by two different genes: miR-34a is transcribed from its own independent locus, whereas miR-34b and miR-34c share a common primary transcript. MiR-34a resides on the chromosomal locus 1p36.23, and the loss of this region is associated with a variety of cancer types [7]. MiR-34a is highly expressed in normal tissues, like testis, lung, adrenal gland and spleen, where its physiological

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call