Abstract

Background: Acute pulmonary embolism (APE) is a prevalent reason of cardiovascular morbidity and mortality. Recent studies have underscored the positive effects of microRNAs (miRNAs) on many diseases. The present study aimed to identify the critical miRNA with differential expressions and explore its role in APE.Methods: The critical miRNA with its target gene was screened by bioinformatics analysis. Their binding relationship was analyzed by TargetScan, Dual-luciferase reporter and RNA pull-down assays. A rat model of APE was established by self-blood coagulum. Human pulmonary artery smooth muscle cells (PASMCs) were exposed to platelet-derived growth factor (PDGF-BB) for excessive proliferation, and transfected with miR-34a-3p mimic. Mean pulmonary arterial pressure (mPAP) of rat was measured, and the pulmonary tissues were used for the pathological observation by Hematoxylin–Eosin (H&E) staining. Cell viability and proliferation were detected by Cell Counting Kit-8 (CCK-8) and EdU assays. The expressions of miR-34a-3p with its target genes (including dual-specificity phosphatase-1 (DUSP1)), neuron-derived orphan receptor-1 (NOR-1) and proliferating cell nuclear antigen (PCNA) were determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or/and Western blot.Results: MiR-34a-3p expression was down-regulated in APE patients, which attenuated the increment of mPAP and thickening of the pulmonary arterial walls in APE rats, accompanied with regulation of NOR-1 and PCNA levels. MiR-34a-3p suppressed DUSP1 expression by directly binding to its 3′-untranslated region (UTR), and attenuated cell viability, proliferation, and the expressions of NOR-1 and PCNA in PDGF-BB-induced PASMCs by inhibiting DUSP1 expression.Conclusion: Up-regulated miR-34a-3p negatively regulates DUSP1 expression to inhibit PASMC proliferation, which, thus, may act on APE treatment by negatively regulating pulmonary vascular proliferation.

Highlights

  • In clinical trial, acute pulmonary embolism (APE) is a prevalent cardiovascular disease, which belongs to the most severe venous thromboembolisms [1]

  • MiR-34a-3p expression was down-regulated in APE patients, which attenuated the increment of Mean pulmonary arterial pressure (mPAP) and thickening of the pulmonary arterial walls in APE rats, accompanied with regulation of neuron-derived orphan receptor-1 (NOR-1) and proliferating cell nuclear antigen (PCNA) levels

  • It has been reported that pulmonary artery smooth muscle cells (PASMCs) migrate to pulmonary artery intima through excessive proliferation and migration after APE, which leads to pulmonary vasculature reconstruction, thereby enhancing pulmonary vascular resistance [3,4]

Read more

Summary

Introduction

Acute pulmonary embolism (APE) is a prevalent cardiovascular disease, which belongs to the most severe venous thromboembolisms [1]. Human pulmonary artery smooth muscle cells (PASMCs) were exposed to platelet-derived growth factor (PDGF-BB) for excessive proliferation, and transfected with miR-34a-3p mimic. The expressions of miR-34a-3p with its target genes (including dual-specificity phosphatase-1 (DUSP1)), neuron-derived orphan receptor-1 (NOR-1) and proliferating cell nuclear antigen (PCNA) were determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or/and Western blot. Results: MiR-34a-3p expression was down-regulated in APE patients, which attenuated the increment of mPAP and thickening of the pulmonary arterial walls in APE rats, accompanied with regulation of NOR-1 and PCNA levels. MiR-34a-3p suppressed DUSP1 expression by directly binding to its 3 -untranslated region (UTR), and attenuated cell viability, proliferation, and the expressions of NOR-1 and PCNA in PDGF-BB-induced PASMCs by inhibiting DUSP1 expression. Conclusion: Up-regulated miR-34a-3p negatively regulates DUSP1 expression to inhibit PASMC proliferation, which, may act on APE treatment by negatively regulating pulmonary vascular proliferation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call