Abstract

BackgroundNon-small-cell lung cancer (NSCLC) is predominant and has low 5-year relative survival rate. Therefore, the mechanisms of NSCLC tumorigenesis must be comprehensively elucidated. MicroRNA-323-3p (miR-323-3p) has been widely explored and found to exert functions in tumorigenesis of several cancer types. However, the expression pattern and biological function of miR-323-3p and the molecular mechanism underlying NSCLC development and progression remain unclear.Material/MethodsQuantitative reverse-transcription polymerase chain reaction was used to detect the expression of miR-323-3p and TMEFF2 in NSCLC cell lines (A549, NCI-H3255, and H1299) and normal cell line (BEAS-2B). Methylthiazolyl tetrazolium, colony formation, and flow cytometry assays were performed to evaluate the effects of miR-323-3p and TMEFF2 on cell proliferation. Transwell assay was conducted to determine the effects of TMEFF2 on cell migration and invasion. Dual-luciferase reporter assay was used to verify whether TMEFF2 is a target of miR-323-3p. Western blot analysis was performed to analyze protein expression.ResultsThe expression of miR-323-3p increased in the 3 NSCLC cell lines (A549, NCI-H3255, and H1299). miR-323-3p regulated cellular progression by directly suppressing TMEFF2 expression and indirectly prohibited the activation of AKT and ERK pathways in NSCLC.ConclusionsOverall, miR-323-3p was considered a lung cancer oncogene and could be a valuable target for NSCLC therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.