Abstract

Understanding the mechanisms of early cardiac fate determination may lead to better approaches in promoting heart regeneration. We used a mesoderm posterior 1 (Mesp1)-Cre/Rosa26-EYFP reporter system to identify microRNAs (miRNAs) enriched in early cardiac progenitor cells. Most of these miRNA genes bear MESP1-binding sites and active histone signatures. In a calcium transient-based screening assay, we identified miRNAs that may promote the cardiomyocyte program. An X-chromosome miRNA cluster, miR-322/-503, is the most enriched in the Mesp1 lineage and is the most potent in the screening assay. It is specifically expressed in the looping heart. Ectopic miR-322/-503 mimicking the endogenous temporal patterns specifically drives a cardiomyocyte program while inhibiting neural lineages, likely by targeting the RNA-binding protein CUG-binding protein Elav-like family member 1 (Celf1). Thus, early miRNAs in lineage-committed cells may play powerful roles in cell-fate determination by cross-suppressing other lineages. miRNAs identified in this study, especially miR-322/-503, are potent regulators of early cardiac fate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.