Abstract
BackgroundGlioma is a highly malignant brain tumor, characterized by the poor prognosis and high recurrence rates. Previous studies have confirmed that miRNA-30c-5p is closely associated with tumor cell biological properties. The present study explored the biological role of miR-30c-5p in human glioma malignant behavior and underlying mechanisms.MethodsLevels of miR-30c-5p were detected in glioma tissues and adjacent normal tissues. Two glioma cell lines including U87 and U251 were transfected with miR-30c-5p mimic or inhibitors. Cell proliferation was evaluated by MTT assay and colony formation assay. Cell apoptosis and invasive potential of glioma cells were assessed by flow cytometry and transwell assays, respectively. Luciferase reporter assay was performed to validate the target gene of miR-30c-5p.ResultsLevels of miR-30c-5p were dramatically decreased in glioma tissues as compared to the adjacent normal tissues. Upregulation of miR-30c-5p significantly suppressed cell growth and colony formation, and induced apoptosis in glioma cells. In contrast, inhibition of miR-30c-5p promoted the proliferation and inhibited apoptosis in tumor cells. Furthermore, miR-30c-5p strongly suppresses the invasion of glioma cells. Western blot showed that Bcl-2 was significantly decreased following treatment with miR-30c-5p mimics and increased after miR-30c-5p inhibitor treatment. Moreover, luciferase reporter assays indicated that transfection of miR-30c-5p led to a marked reduction of luciferase activity, but had no effect on Bcl-2 3'-UTR mutated fragment. Mechanically, miR-30c-5p promoted the activation of caspase 3 and caspase 9 in glioma cells. Furthermore, miR-30c-5p promoted apoptosis and inhibited colony formation and migration, and knockdown of Bcl2 further increased the number of apoptotic cells and suppressed colony formation and migration of glioma cells. By contrast, miR-30c-5p inhibitors decreased apoptosis and increased colony formation and migration, and restored Bcl2 expression further suppressed glioma cell apoptosis and enhanced colony formation and migration.ConclusionsThese results demonstrated that miR-30c-5p regulated growth, apoptosis and migration in glioma cells by targeting Bcl2, suggesting that miR-30c-5p might serve as a novel target for glioma therapy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.