Abstract
Renal interstitial fibrosis is a necessary step in the progression of chronic kidney to end stage renal disease. MicroRNA-29 (miR-29) has been shown to play essential roles in epithelial-mesenchymal transition (EMT), and thus may contribute to the regulation of renal interstitial fibrosis. However, the role of miR-29 in the regulation of EMT during chronic kidney disease and renal transplantation has been a source of intense debate, and the mechanisms underlying this process are incompletely understood. In this study, we investigated the function of miR-29b in the regulation of EMT and to gain a better understanding of the mechanism by which miR-29b modulates EMT by targeting the phosphatidylinositol 3-kinase/protein kinaseB (PI3K/AKT) signaling pathway during the process of renal interstitial fibrosis. The rat proximal tubular epithelial cell line NRK-52E was cultured in DMEM and treated with angiotensinII(AngII) at various concentrations. RT-PCR was performed to investigate changes in the levels of expression of miR-29b in NRK-52E cells and western blotting was used to analyze the expression of PI3K, p-AKT, vimentin and keratin18. The result of the study show that treatment of NRK-52E cells with AngII induced the transition of the cellular phenotype from epithelial to mesenchymal and upregulated the PI3K/AKT signaling pathway; this was also found following treatment with a phosphatase and tensin homolog on chromosome10(PTEN)-specific inhibitor. Increased expression of miR-29b was able to reverse the phenotype induced by AngII in NRK-52E cells and blocking miR-29b activity with an miR-29b inhibitor resulted in enhanced EMT. Additionally, the PI3K/AKT signaling pathway was found to be suppressed in the presence of enhanced expression of miR-29b by direct binding to 3'-untranslated region(3'-UTR) of PIK3R2. We concluded that miR-29b plays an important role in the negative regulation of AngII-induced EMT via PI3K/AKT signaling pathway and propose that enhancing miR-29b level or blocking PI3K/AKT signaling pathway may be a novel therapeutic target in renal interstitial fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.