Abstract
microRNAs are involved in diabetic retinopathy (DR). This study intends to analyze miR-29b’s role in bone marrow mesenchymal stem cells (BMSCs) differentiation in DR rat models to induce nerve repair. BMSCs from DR rat models were cultured and transfected with miR-29b mimics and inhibitors followed by measuring miR-29b level, cell proliferation and apoptosis. Retinal ganglion cells (RGC) were treated with high glucose for 24 h, and BMSCs and si-miR-29b-BMSC were cocultured for 24 h, respectively followed by assessing cell proliferation and apoptosis, inflammatory cytokines by ELISA, MDA, SOD, brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) level by ELISA. MiR-29b was up-regulated in BMSCs of DR rats. miR-29b mimics significantly up-regulated miR-29b, inhibited cell proliferation and promoted apoptosis (P < 0.05), which were reversed by miR-29b inhibitor (P < 0.05). Co-culture of BMSCs with si-miR-29b-BMSC promoted RGC proliferation, inhibited apoptosis and IL-6 secretion, decreased MDA, increased SOD, BDNF and CNTF expression (P < 0.05) with more significant changes in si-miR-29b-BMSC group (P < 0.05). In conclusion, down-regulation of miR-29b promotes BMSCs proliferation in DR rat models, inhibits BMSCs apoptosis, and promotes the recovery of retinal ganglion cell function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.