Abstract

Parkinson's disease (PD) primarily affects the motor system and is the second most common age-related neurodegenerative disorder after Alzheimer's disease. Mitochondrial complex I deficiency and functional abnormalities are implicated in the development of PD. MicroRNA-29a (miR-29a) has emerged as a critical miRNA in PD. This study aims to investigate the protective role of miR-29a in MPP+ in SH-SY5Y cell lines in vitro PD model by targeting mitochondrial antiviral signaling protein (MAVS). Administration of MPP + inhibited miR-29a expression in SH-SY5Y cell lines. Our findings prove that miR-29a mimic treatment decreased cell death, ROS production, MAVS, p-IRF3, p-NFκBp65, IL-6, cleaved caspase-3, cleaved-PARP, LC3BII, and death while increasing glutathione peroxidase 1 and manganese superoxide dismutase after MPP + treatment in SH-SY5Y cells. Furthermore, MAVS expression was significantly corrected with the above genes in our in vitro model of PD. Luciferase activity analysis also confirmed that miR-29a specific binding 3′UTR of MAVS repressed expression. In conclusion, this research provides novel insight into a neuroprotective pathway of miR-29a and could thus serve as a possible therapeutic target for improving the treatment of PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.