Abstract

MicroRNA-29a (miR-29a) has been suggested to serve a potential protective function against Parkinson's disease (PD); however, the exact molecular mechanisms remain elusive. This study explored the protective role of miR-29a in a cellular model of PD using SH-SY5Y cell lines through iTRAQ-based quantitative proteomic and biochemistry analysis. The findings showed that using a miR-29a mimic in SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+) significantly decreased cell death and increased mitochondrial membrane potential. It also reduced mitochondrial reactive oxygen species (ROS) and the production of α-synuclein. Subsequent heatmap analysis using iTRAQ-based quantitative proteomics revealed remarkably contrasting protein expression profiles for 882 genes when comparing the groups treated with miR-29a mimic plus MPP + against the control group treated solely with MPP+. The KEGG pathway analysis of these 882 genes indicated the substantial role of miR-29a in the PD pathway (P = 1.58x10−5) and highlighted its function in mitochondrial genes. Furthermore, treatment with a miR-29a mimic in SH-SY5Y cells reduced the levels of GSK-3β, phosphorylated GSK-3β, and cleaved caspase-7 following exposure to MPP+. The miR-29a mimic also upregulated the expressions of α-synuclein clearance proteins FYCO1 and Rab7 in this cellular PD model, thereby inhibiting the production of α-synuclein. Luciferase activity analysis confirmed the specific binding of miR-29a to the 3′ untranslated region (3′UTR) of GSK-3β, leading to its repression. Our findings demonstrated miR-29a′s neuroprotective role in mitochondrial function and highlighted its potential to inhibit ROS and α-synuclein production, offering possible therapeutic avenues for PD treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call