Abstract
Short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fiber exert myriad of beneficial effects including the amelioration of inflammation. SCFAs exist as anions at luminal pH; their entry into the cells depends on the expression and function of monocarboxylate transporters. In this regard, sodium-coupled monocarboxylate transporter-1 (SMCT-1) is one of the major proteins involved in the absorption of SCFA in the mammalian colon. However, very little is known about the mechanisms of regulation of SMCT-1 expression in health and disease. MicroRNAs (miRs) are known to play a key role in modulating gene expression. In silico analysis showed miR-29a, b, and c with highest context score and its binding region was conserved among mammals. The 3'-untranslated region (UTR) of human SMCT-1 gene was cloned into pmirGLO vector upstream of luciferase reporter and transiently transfected with miR-29a, b, and c mimics into Caco-2 and/or T-84 cells. The presence of UTR of this gene significantly decreased luciferase activity compared with empty vector. Cotransfection with miR-29a, b, or c resulted in further decrease in 3'-UTR activity of SMCT-1 luciferase constructs. Mimic transfection significantly decreased SMCT-1 protein expression without altering mRNA expression. Furthermore, the expression of miR-29a and c were significantly lower in mouse colon compared with small intestine, consistent with higher levels of SMCT-1 protein in the colon. Our studies demonstrated a novel finding in which miR-29a, b, and c downregulate SMCT-1 expression in colonic epithelial cells and may partly explain the differential expression of these transporters along the length of the gastrointestinal (GI) tract.NEW & NOTEWORTHY Our study for the first time reports the posttranscriptional regulation of SMCT-1 by miR-29a, b, and c in colonic epithelial cells. We also demonstrate that the expression of these microRNAs is lower in the mouse proximal and distal colon which partially explains the higher expression level of SMCT-1 in the colon compared with small intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Gastrointestinal and Liver Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.