Abstract

Inflammatory responses play significant role in infectious etiology-induced acute lung injury (ALI). Histone deacetylase 2 is found to be essential and stimulated in lipopolysaccharide (LPS)-induced ALI by regulating proinflammatory cytokines. miR-23b has been demonstrated to be downregulated in LPS-induced inflammatory injury. In this study, we aimed to explore the interaction between miR-23b and HDAC2 and their function in LPS-induced ALI. LPS treatment was induced on murine alveolar macrophage cell line MH-S. Level of miR-23b and HDAC2 were determined by real-time PCR or Western blot. Proinflammatory cytokines expression and secretion were detected by real-time PCR and ELISA assay. The levels of miR-23b and HDAC2 were manipulated by transient transfection of miRNA mimics, shRNA or overexpression vector. The interaction between miR-23b and HDAC2 were tested by Luciferase reporter assay. LPS treatment inhibited miR-23b expression, while increased HDAC2 level in MH-S cells. Proinflammatory cytokines were stimulated by LPS treatment. Knockdown of HDAC2 or overexpression of miR-23b significantly repressed the expression of proinflammatory cytokines induced by LPS. miR-23b could suppress HDAC2 expression by directly targeting to its mRNA. LPS treatment stimulated the inflammatory responses in macrophages through inhibition of miR-23b, enhanced HDAC2 expression and inducing the expression of its downstream targets TNF-α, IL-6, and IL-1β. Overexpression of miR-23b was sufficient to suppress inflammatory responses by targeting HDAC2, making it a promising therapeutic target to ALI treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call