Abstract

Accumulating evidence has shown that microRNAs are involved in multiple processes in cancer development and progression. Recent studies have shown that miR-23a functions as an oncogene in various human cancer types, but its role in osteosarcoma remains poorly understood. Here, we demonstrated that miR-23a is frequently downregulated in osteosarcoma specimens and cell lines compared with adjacent noncancerous tissues and cell line. Bioinformatics analysis further revealed SATB1 as a potential target of miR-23a. Data from luciferase reporter assays showed that miR-23a directly binds to the 3'UTR of SATB1 messenger RNA (mRNA). Furthermore, we found that expression patterns of miR-23a were inversely correlated with those of SATB1 in osteosarcoma tissues and cell lines, and overexpression of miR-23a suppressed SATB1 expression at both transcriptional and translational levels in osteosarcoma cell lines. In functional assays, miR-23a inhibited osteosarcoma cell proliferation, which could be reversed by overexpression of SATB1. Furthermore, knockdown of SATB1 reduced osteosarcoma cell proliferation, which resembled the inhibitory effects of miR-23a overexpression. Taken together, our data provide compelling evidence that miR-23a functions as a tumor suppressor in osteosarcoma, and its inhibitory effect on tumor are mediated chiefly through downregulation of SATB1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.