Abstract

Background and purposeAcquisition of resistance to adriamycin (ADR) is one of the most important clinical obstacles in the treatment of breast cancer, but the molecular mechanisms underlying sensitivity to ADR remain elusive. In our previous study, through miRNA microarray and experiments, we have emphasized that miR-222 could promote the ADR-resistance in breast cancer cells. The aim of this study was to explore the possible mechanism by which miR-222 affects sensitivity to ADR. MethodsThrough pathway enrichment analyses for miR-222, we found that PTEN/Akt/FOXO1 signaling pathway may be of importance. RT-qPCR analyses and western blot assays confirmed the relationship between miR-222 expression and target genes. Immunofluorescence further visually displayed the location of FOXO1. When blocking PTEN/Akt/FOXO1 signaling pathway, we demonstrated the effects of miR-222-mediated ADR resistance by MTT and apoptosis assays. ResultsRT-qPCR and Western blot results showed that miR-222 expression was negatively correlated with FOXO1 expression. In addition, the subcellular translocation of FOXO1 due to the altered expression of miR-222 was observed from immunofluorescence. Moreover, upregulation of miR-222 expression in MCF-7/S cells is associated with decreased PTEN expression levels and increased phospho-Akt (p-Akt) expression. Conversely in MCF-7/ADR cells, inhibition of miR-222 resulted in increased PTEN expression and decreased p-Akt expression. For further validation, results of the present study also demonstrated that PTEN/Akt/FOXO1 signaling was responsible for the ADR-resistance of breast cancer cells since LY294002, an inhibitor of Akt signaling, partially increased the sensitivity of MCF-7/S cells to ADR. More importantly, we postulated that high expression of miR-222 is closely related to poor overall survival by TCGA database validation. ConclusionsTaken together, these data elucidated that miR-222 mediated ADR-resistance of breast cancer cells partly through regulation of PTEN/Akt/FOXO1 signaling pathway and inhibition of miR-222 may improve the prognosis of breast cancer patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.