Abstract

BackgroundIschemic stroke is clearly affected by microRNAs (miRNAs) due to dysfunction of their regulatory networks. Our clinical data confirmed decreased miR-221 levels in plasma collected from patients with acute ischemia compared with plasma from healthy controls. Therefore, we further aimed to demonstrate the regulatory mechanisms by which miR-221 exerts its neuroprotective effects in acute ischemic brain injury. MethodsMiddle cerebral artery occlusion (MCAO) was used to establish focal cerebral ischemia in adult male C57BL/6 mice. A miR-221 mimic or a negative mimic control was injected by intracerebroventricular administration 24 h prior to MCAO. After 48 h, cerebral infarction volume and neurological scores were calculated, and to determine the extent of neuroprotection by miR-221, neurobehavioral tests were performed. Quantitative real-time PCR, ELISA, and flow cytometry were also performed to identify the expression of inflammation-related cytokines and chemokines as well as infiltration/activation of various immune cells in the brain. ResultsThe results showed that MCAO mice treated with a miR-221 mimic exhibited significantly decreased cerebral infarction volume and increased amelioration of behavioral deficits. Moreover, the expression of proinflammatory cytokines (TNF-α, MCP-1, VCAM-1, and IL-6) and chemokines (CCL2 and CCL3) was significantly decreased in the miR-221 mimic-treated group. In addition, the flow cytometry data showed that macrophage infiltration and microglial activation were blocked by miR-221 treatment. Conclusionour results indicate that miR-221 could decrease brain damage in the setting of acute ischemic stroke by inhibiting the proinflammatory response, which furthered our understanding of the molecular basis of miR-221 and provided a new potential therapeutic target for the treatment of ischemic stroke .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call