Abstract

BackgroundSmoking is likely to facilitate airway inflammation and finally contributes to chronic obstructive pulmonary disease (COPD). This investigation was intended to elucidate miRNAs that were involved in smoking‐induced COPD.MethodsAltogether 155 COPD patients and 77 healthy volunteers were recruited, and their serum levels of miR‐221‐3p and miR‐92a‐3p were determined. Besides, human bronchial epithelial cells (16HBECs) were purchased, and they were treated by varying concentrations of cigarette smoke extract (CSE). The 16HBECs were, additionally, transfected by miR‐221‐3p mimic, miR‐92a‐3p mimic, miR‐221‐3p inhibitor or miR‐92a‐3p inhibitor, and cytokines released by them, including TNF‐α, IL‐8, IL‐1β, and TGF‐β1, were monitored using enzyme linked immunosorbent assay (ELISA) kits.ResultsChronic obstructive pulmonary disease patients possessed higher serum levels of miR‐221‐3p and miR‐92a‐3p than healthy volunteers (p < 0.05), and both miR‐221‐3p and miR‐92a‐3p were effective biomarkers in diagnosing stable COPD from acute exacerbation COPD. Moreover, viability of 16HBECs was undermined by CSE treatment (p < 0.05), and exposure to CSE facilitated 16HBECs’ release of TNF‐α, IL‐8, IL‐1β, and TGF‐β1 (p < 0.05). Furthermore, miR‐221‐3p/miR‐92a‐3p expression in 16HBECs was significantly suppressed after transfection of miR‐221‐3p/miR‐92a‐3p inhibitor (p < 0.05), which abated CSE‐triggered increase in cytokine production and decline in viability of 16HBECs (p < 0.05).ConclusionMiR‐221‐3p and miR‐92a‐3p were involved in CSE‐induced hyperinflammation of COPD, suggesting that they were favorable alternatives in diagnosing COPD patients with smoking history.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call