Abstract

Studies on host immunity evasion by aquatic viruses have largely focused on coding genes. There is accumulating evidence for the important biological functions of non-coding miRNAs in virus–host interactions. The regulatory functions of non-coding miRNAs in fish reovirus–host interactions remain unknown. Here, miR-2188-5p in grass carp (Ctenopharyngodon idellus), a miRNA specific to teleosts, was predicted to target the 3′ UTR of the transcription factor klf2a. A correlation analysis and dual-luciferase reporter assay revealed that miR-2188-5p could induce the degradation of klf2a. The expression of miR-2188-5p induced the degradation of klf2a in a dose-dependent manner, suppressing the type I interferon response and promoting grass carp reovirus (GCRV) replication. As determined by a co-expression analysis, klf2a inhibited viral infection when miR-2188-5p was overexpressed. The targeted degradation of klf2a by miR-2188-5p could inhibit the type I interferon response and promote the replication of GCRV; however, this targeted degradation ability was insufficient to fully inhibit GCRV infection. These results provide novel insights into the regulatory effects and biological functions of non-coding miRNAs in fish–virus interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.