Abstract

IntroductionThis study aimed to investigate the role of miR-214 in the bidirectional regulation of p53 and PTEN and its influence on myocardial fibrosis and cardiac mesenchymal transformation in mice with viral myocarditis (VMC). MethodsThe study established a VMC model in BALB/c mice by injecting them with the CVB3 virus intraperitoneally. Techniques such as ELISA, H&E staining, Masson staining, immunohistochemical staining, RT-qPCR, western blot, and dual-luciferase reporter gene assay were used to detect the expression levels of relevant factors in tissues and cells. Isolation and culture of cardiac fibroblasts (CFs) were also conducted. ResultsThe study found that miR-214 bidirectional regulation of p53 and PTEN promotes myocardial fibrosis and cardiac mesenchymal transformation in mice with VMC. The expression levels of collagen-related peptides, inflammatory-related factors, miR-214, mesenchymal transformation-related factors, and fibrosis-related factors were significantly increased, while the expression levels of p53, PTEN, and epithelial/endothelial cell phenotype marker factors were significantly decreased. Downregulation of miR-214 or upregulation of p53 and PTEN expression inhibited inflammatory cell and fibroblast infiltration in VMC mouse myocardial tissue. It reduced the proliferation ability while increasing the apoptosis of cardiac fibroblasts. ConclusionmiR-214 plays a significant role in the bidirectional inhibition of p53 and PTEN, which leads to myocardial fibrosis and cardiac mesenchymal transformation in mice with VMC. Downregulation of miR-214 or upregulation of p53 and PTEN expression may provide potential therapeutic targets for treating VMC-induced cardiac fibrosis and mesenchymal transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call